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Effect of departures from the Oberbeck-Boussinesq 
approximation on the heat transport of horizontal 

convecting fluid layers 
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Measurements are presented of the Nusselt numbers N and Rayleigh numbers R for 
shallow layers of 4He gas heated from below. By choosing different temperatures be- 
tween 2.3 K and 5.1 K and different pressures between 0-07 bar and 1 bar, the extent 
Q of departures from the Oberbeck-Boussinesq approximation was varied. When R 
was evaluated at the static temperature a t  the midplane of the cell, both the critical 
Rayleigh number R, and the initial slope Nl of the Nusselt number were found to  be 
independent of Q within experimental scatter. This result agrees with the prediction 
of Busse ( 1  967). When R was evaluated at the cold end temperature of the cell, both 
Rc and Nl depended strongly upon Q. 

1. Introduction 
The problem of convection in a fluid contained between horizontal parallel plates 

and heated from below is usually discussed within the framework of the approximation 
of Oberbeck (1879) and of Boussinesq (1903) (OB).? In  this approximation, the 
temperature dependences of fluid properties are neglected? except for thermally 
induced density differences when they induce buoyant forces. Real fluids virtually 
never conform fully to  this approximation, although they may come close. It is there- 
fore of some practical interest for the interpretation of experimental measurements 
to study systematically how non-OB effects manifest themselves in real systems. I n  
addition, these effects are of course of considerable intrinsic interest, and a good deal 
of theoretical attention has been devoted to them. However, there has been relatively 
little experimental work on this problem. The experiments that  have been performed 
have concentrated primarily upon visual observations of the convective flow patterns 
(Somerscales & Dougherty 1970; Hoard, Robertson & Acrivos 19701, although recently 
rather quantitative local measurements of the fluid velocity were performed for the 
somewhat extreme case where the expansion coefficient vanishes at the top of the 
cell and is finite a t  the bottom (Dubois, Rerge & Westfried 1978). 

I n  this paper, quantitative measurements of heat transport by the convecting fluid 
are presented. The measurements were made, using 4He gas as the fluid, a t  a number 
of different densities and temperatures. By changing the point in the phase diagram 
at which measurements were made, it was possible to  vary continuously the extent 
of the departures from the OB approximation and thus to  study any non-OB effects 

t For an informative historical comment on the OB approximation, see Joseph (1971). 
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systematically. However, we are concerned here only with moderately non-OB 
systems, and the data to be presented do not address themselves to the hysteretic 
phenomena which are expected to occur near the critical Rayleigh number R, in very 
non-OB cases (Busse 1967). Rather, it is the purpose of the present work to  provide 
precision measurements of R,, and of the Nusselt number N for R greater than but 
near R,, for small to  moderate departures from the OB approximation. 

Since the fluid properties of a non-OB system depend upon the temperature, the 
Rayleigh number is not unique but rather depends upon the vertical position within 
the cell. It was predicled by Busse (1967) that R, will be independent (to first order) 
of the departures from the OB approximation if it is evaluated a t  the static tempera- 
ture T,, a t  the horizontal midplane ( z  = 0) of the convection cell. The data to be 
presented are in excellent agreement with this prediction. They also show that the 
dependence of the Nusselt number upon the Rayleigh number for R > R, is not 
measurably influenced by non-OR effects if R is evaluated a t  !Pq0. 

Some of the results presented in this paper have been reported briefly elsewhere 
(Ahlers 1974, 1975). 

2. Apparatus and procedure 
The apparatus used for this work has been described adequately elsewhere (Ahlers 

1971, 1978), and only the main features are summarized here. The convection cell had 
a circular cross-section with a diameter D of 0.927 cm and a height h of 0.086 f 0.003 cm. 
Uncertainties in the Rayleigh numbers (see equation 4. I below) due to  the uncertainty 
in h therefore are no larger than 10 %. Lateral variations in the height were no more 
than 3 %  and caused a small amount of rounding of the Nusselt number near the 
onset of convection. During the measurements, the temperature at the top of the 
fluid was held constant, and a heat current was introduced a t  the bottom. Both top 
and bottom plates were made of copper, which had a thermal conductivity a t  least 
four orders of magnitude greater than that of the fluid. Thus, extremely uniform 
temperatures along the horizontal boundaries were assured. 

The measurements were made over the temperature range from 2.3 to 5.1 K and 
a t  pressures between 0.07 and 1 bar. 

For R < R,, the applied heat current q and measured stea,dy-state temperature 
difference AT yielded the thermal conductivity A of the fluid. Corrections for the wall 
conduction 1, were made by using the equation 

A = (g/AT - 1,) h / A ,  (2.1) 

where A is the cross-sectional area. The ratio of the conductance lpl of the fluid to 
that of the wall depended mildly upon the temperature, but typically was 1-18. For 
R > R,, an effective thermal conductivity heff was derived from (2. I )  and the measure- 
ments, and the Nusselt number N was given by A,ff/A. Since h is dependent upon AT 
for the non-OB fluid, we chose A(p) for the normalization of N .  Here is the mean 
temperature. 

Possible effects of the relatively large wall conduction upon the Nusselt number 
were explored by making measurements using liquid helium as the fluid. I n  that case, 
Zfl is considerably larger, and Zfl/lw can be as large as 7. The results for N ( R )  were 
indistinguishable from those obtained using 4He gas. 



Departures from the Oberbeck-Boussinesq approximation 139 

3. Fluid properties 
I n  order t o  derive Rayleigh numbers from the measured temperature differences, i t  

is necessary to  have an equation of state, and to know the viscosity and the thermal 
conductivity. 

The virial equation of state 

PV = R T ( i + B / V )  (3.1) 

(3.2) 

where CL = 23.05 em3 mol-l, and ,8 = - 421.2 K cm3 mol-l, is sufficiently accurate over 
the pressure and temperature range of this investigation. I n  equation (3 .1) ,  P is the 
pressure, V the molar volume, T the absolute temperature, and R = 83.1432 cm3 bar 
mol-l K-l is the gas constant. From equation (3.1), we obtain 

with the second virial coefficient given by (Keller 1969) 

B = CI + PIT, 

v = 2 P  [ I  + ( 1  +-$37. 
The density is given by 

p = 4*0038/V 

(3.3) 

(3 .4 )  

A comparison of the density derived from these equations and the measured density 
of the gas a t  saturated vapour pressure has been given elsewhere (Ahlers 1978), and 
the agreement is very good. 

For the isobaric thermal expansion coefficient we have 

p p  = v-yaV/aT),  

= T-’ + V-’(B’ -BIT)/( 1 + 4BP/RT):,  (3.5) 
where 

B’ = dB/dT 

= -/?IT2. 

The heat capacity a t  constant pressure can be derived also from (3.1), and is given by 

where 
B” = 2$/T3. 

The thermal conductivity was measured during this work, using thermal gradients 
sufficiently small to  avoid convection (Ahlers 1978). I n  the low-density limit, these 
results are in good agreement with those of Kerrick & Keller (1969). 

The shear viscosity r was determined by Becker, Misenta & Schmeissner (1954a, b) ,  
and their data can be represented by 

r = - 0.51 + 2.68T, 

where g is in ,up 
( 3 . 7 )  
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4. Theoretical predictions 
The Rayleigh number is defined as 

R S  9 P P F l -  Tz) h3 
KV 

9 

where g is the gravitational acceleration, h the height of the fluid layer, K = A/@, the 
thermal diffusivity, v = y / p  the kinematic viscosity, and TI and T2 are the tempera- 
tures at  the bottom and top of the cell respectively. The vertical axis is z, and the top 
and bottom boundaries are a t  z = 4 and z = - 4 respectively. For the non-OB system, 
R depends upon z because P p ,  K and v depend upon T(z) .  The second relevant dimen- 
sionless parameter in the problem is the Prandtl number, given by 

The z dependence of a is very weak because v and K have a similar temperature 
dependence. The value of c is always close to $, as expected for a gas in the low density 
limit (Hirschfelder, Curtiss & Bird 1954). 

The effect of departures from the Oberbeck-Boussinesq approximation for a 
laterally infinite fluid has been discussed by a number of authors, including Busse 
(1962, 1967), Palm, Ellingsen & Gjevik (1967) and Davis & Segel(l968). Of these, the 
results by Busse (1967) are the most complete in the sense that they consider (to first 
order) the effect of variations in all the relevant fluid properties, and the effect of 
finite Prandtl numbers. 

We shall therefore compare the experimental results with these theoretical predic- 
tions, although one must keep in mind that the experiments pertain to a laterally 
finite system. Busse defined the parameter? 

= V / K .  (4.2) 

d 

Q =  y ip ,  
i = O  

to describe the extent of departures from the OB approximation. Here 

Yo = - ( P 1 -  P2)/POJ 

Y 1  = ( P P l  --PP2)/2PPO, 

Y z  = ( v 1 -  V Z ) / V O ,  

Y 3  = V l - A 2 ) / A o ,  

Y 4  = (QP, - CPZ)/CPO* 

(4.3) 

(4.44 

(4.4b) 

(4.4c) 

(4 .44  

(4.4e) 

The subscripts 1 and 2 indicate that the fluid properties should be evaluated at  the 
temperatures Tl and T,, corresponding to z = - & and z = &, respectively. The sub- 
script 0 indicates that a reference temperature To is used. The parameters Pi are 
(Busse 1967) 

Po = 2.676 - 0*1258/a, 

Pl = - 6.603 - 0*5023/a, 

(4.5a) 

(4.5b) 

P2 = 2.755 + O / V ,  

P3 = 2.91 7 - 0*5023/~r, 

(4.5c) 

(4 .5d)  

P4 = - 6.229+ 0*2512/a. (4.5e) 

t Our parameter Q is the same as Busse's (1967) P .  We reserve the symbol P to denote the 
pressure. 
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In the last equations, the constant terms were calculated for rigid-rigid boundary 
conditions, but the coefficients of the r1 terms are approximate and taken from 
calculations for free-free boundary conditions. 

For non-zero Q ,  the theory predicts that the critical Rayleigh number R,(z) will be 
independent of Q (to linear order) only a t  z = 0. When the thermal conductivity 
varies linearly with T, the static temperature T, (z )  is given byt 

and a t  z = 0 it  has the value 

(4.7) 

We define a Rayleigh number R, in terms of equation (4.1) and the fluid properties 
a t  T,,. In the next section we shall examine the experimental results for the critical 
value R,, of R,. In addition to the critical Rayleigh number Re,, there are three 
distinguished values of R,, to be referred to  as R,, R,, and R,, with 

R, < R,, < R, < R,. 

For R, < R, < R,, only flow of hexagonal symmetry is stable according to the theory. 
For R, < R, < R,, both hexagonal flow and the rolls characteristic of the OB approxi- 
mation are predicted to be stable. For R, > R,, only rolls remain stable. The trans- 
itions are given by 

(R, - Rc0)/Q2 = - 1/4Rg0), 

(RB - R,,)/Q2 = (9Rg’) - 3L2)/L,2, 

(4.8) 

(4.9) 

(RE - R,,)/Q2 = 3Rg0)/L,2, (4.10) 

(4.11) 

(4.12) 

(4.13) 

with$ 
Rg0) = 0.89360 + 0.04959/~ + 0*06787/a2, 

Rgo) = 0.69942 - 0*00472/~+ 0*00832/a2, 

L, = 0.29127 + 0*08147 /~+  0*08933/a2. 

The convective heat transport for the hexagons (for R, < R, < R,) is given by 

For the rolls, the OB result (Schluter, Lortz & Busse 1965) 

Rlt = (R, - R,,)/R$’’ (4.15) 

applies. The Nusselt number is related t o  a by N = 1 + B//R,. Equation (4.14) indi- 
cates that near R,, the deviation of N from the OB value is of order Q2/R,,. There- 
fore it appears that the results of the theory should apply when Q2 < Re,. For the 
present work, this condition is always satisfied. Values of Q pertinent to the data are 
given in table 1. 

t Equation (6.6) of Russe (1967) for T, contains misprints. 
1 The parameters RF and Rgo’ differ from the parameters RZ) and Rg’ given by Schluter et al. 

(1965) by the factor u / K  = 1/2904.4 of that reference. 
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T2 P (Tr-TZ) c 
Sample [K] [mbar] [KI U 

1 
2 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

2.3768 
2.9399 
3.2883 
3.2883 
3.2883 
3.2883 
3.2883 
3.2883 
3.3883 
3.2883 
3.9651 
3.9661 
5.1006 
4.5154 
4.5154 
4.5154 
4.5154 
4.5154 

67.90 
84.90 
95.44 

116.0 
136.6 
158.3 
187.8 
204.7 
245.8 
326.8 
408.3 
408.3 
543.3 
473.9 
559.0 
728.7 
834.7 
944.5 

0.1564 
0.3944 
0.7561 
0.3579 
0.2166 
0.1438 
0.0918 
0.0724 
0.0435 
0.01844 
0.03894 
0.03914 
0.0956 
0.0632 
0.03898 
0.01680 
0~01001 
0.00607 

0.73 
0-70 
0.69 
0.70 
0.70 
0.71 
0.72 
0.72 
0.74 
0.77 
0-73 
0.73 
0.71 
0.72 
0.73 
0.78 
0.81 
0.86 

Re, 
1746 
1741 

(1758) 
1790 
1774 
1770 

(1788) 
1782 

(1775) 
1764 

( 1799) 
1808 

( 1764) 
( 1803) 
(1778) 
(1775) 
1744 
1803 

- 
0-868 
- 
- 

0.906 
0-892 

0-909 

0.879 

0.889 

- 

- 

- 
0.897 

TABLE 1. Experimental conditions and derived parameters 
for the samples used in this work 

N z o  
- 

- 0.26 
- 
- 

- 0.30 
- 0-28 
- 

- 0.31 
- 

- 0.28 
- 

- 0.31 
- 

- 
- 0.32 

QC 

1.06 
1.93 
2.66 
1.58 
1.05 
0.72 
0.50 
0.40 
0.26 
0.13 
0-21 
0.21 
0.35 
0.27 
0.18 
0.10 
0.07 
0.05 

RIRc 

FIGURE 1. Nusselt numbers as a function of the reduced Rayleigh numbers RIB,. 0 , @,O, = 0.05; 
0, m, Q, = 1.05; A, A, Q, = 1.93. (The parameter Q, is a measure of the extent of departures 
from the Oberbeck-Boussinesq approximation.) For the open symbols, R / R ,  was evaluated at 
the static temperatures at the midplane of the cell, R2, Rcz. For the solid symbols, R/R,  was 
evaluated a t  the cold (top) end temperature of the cell, Ro/Rc0. 
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RolRcrl N 

0.6283 170012 
0-8547 0.9989 
0.9018 1.0027 
0.9470 1.0127 
0.9912 1.0253 
1.0325 1.0443 
1.0718 1-0674 
1.1091 1-0942 
1-1444 1.1245 
1.1816 1.1519 
1.2189 1.1798 
1.2561 1.2075 
1.2933 1.2358 
1.3305 1.2642 
1.3696 1.2898 
1.4087 1.3156 
1-4497 1.3389 
1.4907 1.3624 
1.5317 1.3863 
1.5746 1.4079 
1,6155 1.4322 
1.6584 1.4543 
1.7012 1.4765 
1.7907 1-5169 
1.8820 1.5558 
1.9751 1.5937 
2.0701 1.6306 
2.1688 1.6640 
2.2692 1.6965 
2.3735 1.7262 
2.4814 1.7533 
2.5853 1.7853 
2.6948 1.8127 
2.9228 1.8624 
3.2188 1.9203 

TABLE 2. Measured Nusselt numbers N and reduced Rayleigh numbers Ro/Rc0 for 
sample 20 (&, = 0.05). Ro/Rc0 was evaluated at Ts0, and R,, was taken to be 1803 

5.  Results 
The temperature T, a t  the top of the cell and the 4He gas pressure P are given in 

the first and second columns of table 1 for each of the investigated samples. Nusselt 
numbers were calculated from the applied heat current and the measured T, - TI as 
described in 3 2. The Rayleigh numbers R, at the midplane of the cell were calculated 
using the fluid properties given in 3 3 and equation (4.7) for To. For sample 20, which 
comes closest to satisfying the OB approximation, the results are given in table 2 
and some of them are plotted as open circles in figure 1. 

It is evident from figure 1 that N(R, )  shows some rounding in the vicinity of Rco. 
This has been discussed in detail elsewhere (Ahlers 1975), and is attributable to slight 
departures from parallelism of the top and bottom plates of the convection cell. 
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h?m, ?E R'O N I O  NZIJ N30 N40 

- - 1.21 2 1803 0.911 - 0.402 
1.34 2 1802 0.892 - 0.301 
1.46 2 1803 0.897 - 0.319 - - 

3 1803 0.928 - 0.409 0.078 - 
1.63 3 1810 0.937 - 0.443 0.112 - 

4 1807 0-923 - 0.396 0.051 0.026 

- - 

TABLE 3. Least-squares fit parameters of equation (5.1) for sample 20. 
Only data with N > 1.09 were used 

Recently, measurements have been made by Behringer & Ahlers (1977) on cells with 
more uniform heights, and N(R,) has been found to be sharper by an order of magni- 
tude. The rounding near R,, of the data under discussion here causes some difficulty for 
the determination of R,,. We obtained R,, by fitting data outside the rounded region 
to the equation 

where 
6 3 R,/R,, - 1. 

(5.1a) 

(5 .1b)  

In  order to test the reliability of this procedure, the data for sample 20 were fitted 
over various ranges with Nmin < N 6 N,,,. To exclude the rounded region, we always 
used Nmin = 1-09  which is sufficiently large. Results for several n and Nnlax are given 
in table 3. For n = 2, the results are largely independent of N,,,, and for N,,, suffi- 
ciently large to warrant a fit with n = 3 or n = 4 the results for R,,, Nlo, and N,, are 
not changed much by changing n. For a systematic analysis of the data for all samples, 
we used n = 2 and N,,, = 1.46. The results for R,,, Nlo, and N,, are given in table 1. 
For some of the samples, there were insufficient data for N > Nmin and in those cases 
R,, was adjusted until agreement with N(R,/R,,) for sample 20 was obtained near 
N = 1.1. These latter results are given in parentheses in table 1. 

We believe that the results for RcO, Nlo, and N,, in table 1 are not influenced measur- 
ably by the rounding of N ( R )  near R, because they are consistent with measurements 
made in cells of more uniform height with I' = 4 . 7 2  and I' = 2.08 (Behringer & Ahlers 
1977), using liquid helium as the fluid. The results for the more uniform geometries 
are restricted, however, to small Q, and non-OB samples have not been studied in 
them. 

Table 1 also gives values of Tl - T2 when R, = A,,, of the Prandtl number n, and of 
Q, (i.e. the value of Q when R, = R,,). In  figure 2, the results for R,, are plotted as a 
function of Q, as open circles. It is evident that R,, is independent of Q, for the range 
Q, < 2.7 of the experiments. This result agrees with the prediction by Busse (1967) 
that  R,, should be independent of Q to  first order in the coefficients yi (see $4).  In  
order to show that this experimentaI result is non-trivial, we have evaluated R, 
(R a t  z = a) for all the data, fitted N to equation (5 .1  a )  with 

2 = R,/R,,- 1 ( 5 . 1 ~ )  

replacing 8, and plotted the results for R,, in figure 2 as solid circles. The figure clearly 
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2500 

0 0.5 1 .o 1.5 2.0 2.5 

(Departure from OB approximation) 

FIGURE 2. Critical Rayleigh number R, as a function of &,. (The value of &, is a measure of the 
extent of departures from the Oberbeck-Boussinesq approximation.) 0, R, evaluated a t  the static 
temperature a t  the midplane of the cell (for Tso); a, R ,  evaluated at  the cold (top) end of the 
cell (for T,) . 

illustrates that  the values obtained for R, are quite sensitive t o  the value of z used in 
the data processing, and for the larger Q’s only values of z rather close to  zero result 
in the OB values of R,. 

The mean value of R,, is equal to  1775. The major systematic error is due to the 
uncertainty in h, and is as large as 160. The theoretical prediction of R, for the 
cylindrical OB system with an aspect ratio near 5.4 is 1730 (Charlson & Sani 1970), 
in good agreement with the measurements. 

For the non-OB system, it is predicted that the transition a t  R,, should be an 
inverted bifurcation and that flow in the form of hexagonal cells should be stable for 
R, near R,, (Busse 1967). For the parameters of sample 2 ((T = 0-70, Q, = 1.93) we 
obtain,from (4.8)to (4.10), - 5  x 10-4 < e 6 0~050fortherangeofstabilityofhexagons 
and e > 0.013 for the stability of the rolls which are characteristic of the OB system. 
The range of stability of hexagons is entirely within the rounded region of the data, 
and therefore the data are not suitable for detecting the predicted inverted bifurcation. 
We expect the analysis of N(R,) for N > 1.09 to pertain to the rolls which are predicted 
to  be stable for E > 0.013. 

I n  addition to  the data for the OB case (sample 20, Q, = 0.05), we have plotted in 
figure 1 also N(R,/R,,) for sample 7 (Q, = 1-05) and for sample 2 (Q, = 1.93) as open 
squares and triangles respectively. These data are seen to agree well with each other 
and are within our resolution independent of Q. I n  order to show that a Nusselt 
number independent of Q is obtained only if R is evaluated at  the static temperature 
near z = 0,  we also show in figure 1 N(R,/R,,) (i.e. corresponding to z = 4). These 
results are shown as solid symbols. They show a strong Q dependence. 

In  order to  represent the contents of figure 1 in a more quantitative manner, we 
have plotted in figure 3 the values of Nlo, Nlz, N,,, and N,, obtained from least-squares 
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C 

- 

0.4 I I I 

I 1 I I 

0 0.5 1 .o 1 .5  2.0 

(Departure from OB approximation) Q,  

FIGURE 3. The parameters Nl and N,,  obtained by fitting Nusselt numbers and Rayleighnumbers 
to equation (5.1), as a function of Q,. (The value of &, is a measure of the extent of departures 
from the Oberbeck-Boussinesq approximation.) Open symbols were obtained by fitting with R 
and R, evaluated a t  the static temperature a t  the midplane of the cell (for T8J ; solid symbols were 
obtained by fitting with Rand R, evaluated at the cold (top) end of the cell (for T,) .  

fits to (5.1) with n = 2 and N,,, = 1.45. The open symbols are N,, and N,, and were 
obtained by fitting to ( 5 . l a )  with B given by (5.lb). The solid symbols are N,, and 
N,,, and were obtained by fitting to (5.1 a)  with B replaced by E as given by (5.1 c). Again 
it is clear that N,, is within experimental scatter independent of Q, whereas N,, is 
strongly Q dependent. For N, the experimental information is not quite as definitive, 
but again N,, is more nearly constant than N,,. 

The best values of N, and N, in the OB limit are obtained from the analysis of sample 
20. They are Nl = 0.90 k 0.02 and N, = - 0.32 k 0.02. Since these results were obtained 
by fitting to (5.1) which is a truncated expansion for N - 1, the data were also fitted 
to the function 

( N - l ) R / R ,  = f l , ~ + f l , € ~ .  

If the truncation has a negligible effect, we expect fl, = Nl and 82 = N,+ N,. The 
result was 8, = 1.02 k 0.02 and fi, = 0.22 k 0.02. It is apparent that the data do not 
yield very quantitative information for the coefficient of the e2 term. Our best estimate 
for the initial slope would be somewhere between N, and fl,, and about equal to 
0.96 0.06. For the laterally infinite system, this slope has been calculated by Schliiter 
et aE. (1965), and for c = 0.86 is equal to 1.428. Measurements at large Prandtl numbers 
and for an aspect ratio much larger than ours by Koschmieder & Pallas (1974) and by 
Rossby ( 1  969) agree rather well with the prediction. The small value of the initial 
slope obtained in this work is attributable to the small aspect ratio of the experimental 
cell. This has been discussed in more detail elsewhere (Behringer & Ahlers 1977). 
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6. Summary 
I n  this paper experimental data were presented for convective heat transport in 

horizontal layers of 4He gas which were heated from below. The convection cell had 
cylindrical symmetry, and the aspect ratio I? = D/2h ( D  = diameter, h = height) was 
equal to 5.4. By choosing different temperatures and pressures, the extent Q of 
departures of the system from the approximation of Oberbeck (1879) and of Bous- 
sinesq (1903) was varied. The results were analysed in terms of the theoretical pre- 
dictions by Busse (1967). None of the measurements revealed the existence of the 
predicted inverted bifurcation a t  R, which is expected to be associated with the flow 
of hexagonal symmetry near Re. Instead, the Nusselt number was rounded over a 
narrow range of R. We attribute this to imperfections in the geometry of the cell. 
For the maximum value of Q achieved during the experiment, the predicted range of 
stability of hexagonal flow fell within the rounded region, and therefore the data do 
not give any information about the existence of the inverted bifurcation. 

Outside the rounded region, the results for N(R)  were fitted to a polynomial in 
6 = R/R, - 1.  This fit yielded estimates of R, and of the initial slope Nl of Nus.  R. It 
was found that both Nl and R, were independent of Q if R was evaluated a t  the static 
temperature T,, a t  the midplane of the cell. This result agrees with the prediction by 
Busse (1967). I n  order to show that only a fit using R(T,,) gives &-independent values 
of R, and N,, the analysis was carried out also using R(T,), where T, is the temperature 
a t  the cold end of the cell. I n  that case, both Re and Nl were found to be strongly 
&-dependent. 

The values found for Re in the limit Q = 0 agreed within experimental uncertainties 
with the theoretical result for a laterally finite system with I? = 5.4 (Charlson & Sani 
1970)) but had insufficient accuracy to distinguish between the finite I? value of R, 
and the one appropriate for I? = 03. The initial slope Nl was less than the theoretical 
value for I? = co (Schluter et al. 1965), but consistent with measurements for other 
finite aspect ratios (Behringer & Ahlers 1977). 
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